

1

AERGO CHAIN Whitepaper

AERGO

Technical White Paper

 Last Updated: 17 July 2018, AERGO

2

ABSTRACT
AERGO is a proposed new blockchain protocol, which aims to power both public and private

blockchain deployments. Based on Blocko Inc’s (Blocko) experience in providing large-scale,

production level private blockchain to recognized enterprise customers, AERGO intends to be

purpose-built to enable enterprise architectures based on blockchain by incorporating both new,

innovative and established technical approaches to build scalable distributed database systems.

LEGAL DISCLAIMER
This paper relates to the AERGO project and should be read in conjunction with the whitepaper

available at https://AERGO.io. This and other documents may be amended or replaced at any

time, without notification of any changes or access to any additional information.

This paper describes a future project

This paper contains forward-looking statements that are based on the beliefs of AERGO Limited,

a private Hong Kong company limited by shares (CR No. 2713137) (AERGO Limited), as well as

certain assumptions made by and information available to the AERGO Limited.

AERGO as envisaged in this technical whitepaper is under development and is being constantly

updated, including but not limited to key governance and technical features. The native AERGO

token (AERGO Token) involves and relates to the development and use of experimental platforms

(software) and technologies that may not come to fruition or achieve the objectives specified in

this whitepaper. If and when AERGO is completed, it may differ significantly from the network set

out in this whitepaper. No representation or warranty is given as to the achievement or

reasonableness of any plans, future projections or prospects and nothing in this document is or

should be relied upon as a promise or representation as to the future.

Eligible purchasers

The information in this whitepaper is provided privately to certain prospective purchasers and is

not intended to be received or read by anyone else. Eligibility is not guaranteed and is likely to be

subject to restrictions.

No offer of regulated products

The AERGO platform, AERGO Token or any token that operates on it is not intended to represent

a security or any other regulated product in any jurisdiction. This document does not constitute an

offer or solicitation of securities or any other regulated product, nor a promotion, invitation or

solicitation for investment purposes. The terms of the purchase are not intended to be a financial

service offering document or a prospectus of any sort.

AERGO Token does not represent equity, shares, units, royalties or rights to capital, profit, returns

or income in the platform or software in the AERGO Limited or any company or intellectual property

associated with the platform or any other public or private enterprise, corporation, foundation or

https://aergo.io/

3

other entity in any jurisdiction

This technical whitepaper is not advice

This technical whitepaper does not constitute advice to purchase AERGO Token. It must not be

relied upon in connection with any contract or purchasing decision.

Risk warning

The purchase of AERGO Token and participation in AERGO Token sale carries with it significant

risks. Prior to purchasing AERGO Token, you should carefully assess and take into account the

risks, including those listed in any other documentation.

Views expressed in this technical whitepaper

The views and opinions expressed in this technical whitepaper are those of AERGO Limited and

do not reflect the official policy or position of any government, quasi-government, authority or

public body (including but not limited to any regulatory body of any jurisdiction) in any jurisdiction.

Information contained in this technical whitepaper is based on sources considered reliable but

there is no assurance as to their accuracy or completeness.

English is the authorized language of this whitepaper

This technical whitepaper and related materials are issued in English only. Any translation is for

reference purposes only and is not certified by AERGO Limited or any other person. No assurance

can be made as to the accuracy and completeness of any translations. If there is any inconsistency

between a translation and the English version of this technical whitepaper, the English version

prevails.

No third party affiliation or endorsements

References in this technical whitepaper to specific companies and platforms are for illustrative

purposes only. The use of any company and/or platform names and trademarks does not imply

any affiliation with, or endorsement by, any of those parties.

You must obtain all necessary professional advice

You must consult a lawyer, accountant, tax professional and/or any other professional advisors as

necessary prior to determining whether to purchase AERGO Token or otherwise participate in the

AERGO project.

This technical whitepaper has not been reviewed by any regulatory authority in any jurisdiction.

References in this paper to specific companies, networks and/or potential use cases are for

illustrative purposes only. Other than explicitly mentioned partners or providers such as Blocko,

the use of any other company and/or platform names and trademarks does not imply any

affiliation with, or endorsement by, any of those parties.

4

BACKGROUND
Blocko has supplied more than 20 enterprise customers with its own private blockchain

implementation “Coinstack.”1 Coinstack is based on a modified Bitcoin architecture and

Ethereum Virtual Machine executing smart contracts, bearing a close resemblance to QTUM2

and RSK.3 While Coinstack performed reasonably well for even larger-scale use-cases such as

powering the authentication process for the entire customer-base of a credit card provider with

millions of daily users,4 it also provided an insight into the Bitcoin protocol’s upper limit of

performance and the Ethereum Virtual Machine’s incompatibility with the enterprise architecture

and the developers behind them.

In order to better leverage the tool chain and the application architecture of Coinstack

supporting actual use-cases, Blocko started working on AERGOSQL and AERGO. AERGOSQL

is an innovative, new smart contract engine capable of utilizing relational data model and

developing smart contracts using tools and languages familiar to enterprise developers. For a

detailed description of AERGOSQL, see the AERGOSQL technical whitepaper available at

https://AERGO.io/paper/.

This paper describes the challenges faced by enterprise blockchain deployments and the new

requirements and architecture capable of addressing these challenges.

ENTERPRISE BLOCKCHAIN REQUIREMENTS

We believe that enterprise blockchains operate under different assumptions and environments

from public, generic blockchains. With the deployment of Coinstack, Blocko gained first-hand

exposure to the reality of enterprise blockchain adoptions. We describe a number of these

general assumptions below:

• Unlike public blockchain users, who usually operate blockchain nodes on commodity

hardware, businesses tend to run blockchain on server grade hardware with vast computing

power and storage.

• Businesses want to run blockchain not only on cloud, but on private cloud and bare metal

machines as well. The functionalities provided by private cloud and bare metal environments

differ significantly from public cloud services.

• While public blockchain users run blockchain nodes at small number, businesses want to run

a large number of blockchain nodes in order to take advantage of horizontal scalability and

availability.

• Businesses need more control and functionalities related to the administration of blockchain

than public blockchain users.

• While most of applications running on public blockchain are self-contained or dependent only

1 http://blocko.io
2 https://qtum.org/en/
3 https://www.rsk.co
4 http://www.blocko.io/news/view/39

https://aergo.io/paper/

5

on assets on the blockchain itself, businesses want to connect applications running on

blockchain with many external and internal systems such as e-mail, SMS, databases, LDAP,

and public data.

We explore below a number of other key attributes we believe that are integral to enterprise

focused blockchains.

SCALABILITY

Since enterprise blockchain users typically have better access to hardware in terms of both

quantity and quality, enterprise blockchain implementations need to scale both horizontally and

vertically.

INTEROPERABILITY

Enterprise environments tend to depend on diverse range of technologies accumulated through

years of operation and enterprise blockchain implementations need to work with both modern,

standard interfaces such as OAuth and old, propriety interfaces such as Active Directory.

DEVELOPMENT ENVIRONMENT

Since the majority of enterprise development tend to be project focused, there is little room for

experimenting and learning new languages and tools for the developers; instead of forcing

developers to learn new languages to create smart contracts, enterprise implementations need

to allow developers to leverage their existing knowledge and experience with familiar toolchain.

At the same time, certain resources web developers take for granted, such as unlimited internet

access, are not available for enterprise developers. As a result, enterprise blockchain

implementations need to supply a more comprehensive development environment with IDEs,

SDKs, and reference architectures than public blockchain implementations.

DATA PRIVACY

Businesses face pressures to ensure stringent data security in terms of confidential information

and also customer / employee personal data. Often the desire for data security is a more

important consideration than the immutability and integrity of data provided by blockchain. While

one way to achieve data security on public blockchains is to implement an encryption and

decryption layer at the application level. enterprise blockchain implementations need to provide

a more robust, holistic approach to securing data.

PROVISIONING AND ADMINISTRATION

While web developers are happy to use Vagrant or Docker on their laptops, enterprise IT is

more comfortable with bigger guns like Tivoli Provisioning Manager, OpenStack, or Kubernetes.

Enterprise blockchain implementations need to support integration with existing technology for

provisioning and managing in enterprise IT and provide much richer suite of functionalities for

6

administration. Export and import, backing up the data, monitoring, logging, and data migration

are typical features overlooked by public blockchain implementations, but important in the

enterprise environment.

STRUCTURED AND UNSTRUCTURED DATA STORAGE

Smart contracts provide the foundation of functionality on both public blockchain and enterprise

blockchain. Unlike dApps built on public blockchains with their access to cloud-based storage

and CDN providers, dApps on enterprise blockchains need to be more self-reliant and

enterprise blockchain implementations need to accommodate them with rich functionality for

both structured and unstructured data storage.

CORE ARCHITECTURE

Figure 1. AERGO Architecture

AERGO is designed to be a holistic, multi-purpose platform, that bridges the gap between public

blockchains and private blockchains. In order to be effective under both environments, AERGO

is intended to be compact, yet flexible in design.

In order to service multi-tenant workloads with potentially millions of concurrent users accessing

the same set of nodes, AERGO intends to borrow many concepts from both traditional database

designs and distributed computing.

7

DISTRIBUTED DIRECTORY

Distributed Directory (DD) is a core functionality that is intended to be used as a building block

for the whole AERGO implementation.

Each DD in a repository is proposed to manage an independent, isolated namespace. Each

namespace contains information about different branches and tags residing in the repository, as

well as the validity of various identifiers on the blockchain.

Each DD is intended to be a blockchain on its own, with its own genesis block and the best

block. Unlike conventional blocks, DD blocks are limited in size with a relatively long creation

interval between them; since DDs are used for managing metadata, they need to be compact.

DD is comparable to data dictionaries in databases, zookeeper for Hadoop, or etcd for CoreOS

in its role and functionality.

a. Tree of Life (ToL)

The ToL namespace of a DD is proposed to contain information about all the branches in the

repository, as well as their genesis blocks or root blocks. The information about tags are

managed inside the ToL namespace as well. As a result, the ToL namespace contains

information about the best block of each branch as well; since the HEAD tag continuously keeps

track of the best block of each branch.

b. Distributed Directory Service (DDS)

The DDS namespace is proposed to contain entries for different entities on blockchain; their

public keys and validity, as well as associated roles and permissions. The DDS namespace is

intended to serve as the basis for access control for AERGO repositories.

Each entity can represent either a client-actor or a server certificate. For entities with server

certificates, DDS can serve as both Certificate Revocation List and a DNS with routing

information.

AERGOFS, the proposed distributed file system component of AERGO, is intended to be

dependent on DDS, since DDS keeps track of data volumes consisting each AERGOFS

instance. In turn, AERGOFS can be used for storing blocks and indexes for different branches

in the repository.

The DDS namespace forms the basis of identity for nodes to participate in the core consensus

process as well.

8

CONSENSUS ALGORITHM

a. Core Consensus

The core consensus algorithm is intended to be used for building the DDS. The core consensus

algorithm and the DDS are mutually dependent, since the core consensus algorithm needs to

access the DDS within the DD to enable mining new blocks.

The proposed core consensus algorithm of AERGO is Delegated Proof of Stake (DPOS)5.

DPOS is the preferred consensus model because, in summary:

• We believe it provides the scalability and the simplicity of operation required by a core

consensus; and

• DPOS operates under the assumption that block reorganizations can happen, which

means it is an optimal algorithm for powering the underlying infrastructure of AERGO.

b. User-Defined Consensus

By default, each repository uses the core consensus. Since AERGO intends to provide a

pluggable architecture for consensus algorithm as well, different consensus algorithm modules

can be used in place of the core consensus. Notably, RAFT (for development) and PBFT (for

strict-ordering) are useful for developing and running different services.

Using the same toolchain for building smart contracts, a user-defined consensus algorithm can

be used for each repository as well. The user-defined logic can govern how following events are

occurred and managed in the blockchain.

• Block creation and its permission

• Block transmission and priorities

Since block branching and merging can be perceived as block reorganization events as well,

the same policy for block reorganization is used for distributed version control as well. From

version control perspective, the block reorganization policy is called "Consistent Merging."

SMART CONTRACTS

AERGO supports a multi-paradigm, plugin-based smart contract infrastructure.

Each contract can be executed or queried by a client-actor or another smart contract instance.

Since AERGO provides a permissive interface with maximum interoperability between smart

contract implementations, contracts written for Ethereum Virtual Machine, Fabric Chaincode, or

AERGOSQL can be used with each other.

5 https://steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper

9

a. AERGOSQL

The canonical way to write a smart contract for AERGO is provided by AERGOSQL.

AERGOSQL provides a relational data model for storing and accessing data and SQL-like

scripting language for writing smart contracts.

Using AERGOSQL, smart contracts can be written using the familiar SQL syntax.

Figure 2. AERGOSQL Coding model extract

For maximum performance, AERGOSQL leverages technologies such as LLVM to utilize JIT

compilation6 and high-performance b-tree implementations such as WiredTiger7for data

storage.

6 https://llvm.org
7 http://www.wiredtiger.com

10

b. Interoperability

With its pluggable architecture, AERGO is designed to support different smart contract

implementations. AERGO inherits the Ethereum Virtual Machine compatibility from Blocko

Coinstack out of box. Fabric Chaincode is supported through lightweight virtualization such as

Docker.

The initial release of AERGO is dependent on go-Ethereum’s EVM implementation. The use of

evmjit for higher performance is planned in the future.

SMART ORACLES

AERGO supports integrating smart contracts inside the walled garden of blockchain, as well as

smart contracts that have regard to external events and factors through implementing smart

oracles. Smart oracles seek to provide following functionalities:

• Allow smart contracts to consume data from legacy systems such as Active Directory

• Allow smart contracts to trigger events in external services such as e-mail or SMS

From the perspective of a smart contract, smart oracles are external factors that are coupled to

a specific smart contract; smart oracles react to changes to the coupled smart contract and

inject data as a response. In some cases, smart oracles can trigger smart contracts

autonomously.

From the perspective of a dApp, smart oracles implement micro-services that expose external

functionalities required by the dApp. Since smart oracles and dApps can communicate off-chain,

the micro-services provided by smart oracles can be used to implement an out-of-band

communication required by the smart contract; a common use-case includes exchanging an

authentication token between a smart oracle and dApp.

Isomorphic Contracts

AERGO development toolkit intends to support the isomorphic execution of a smart contract

through automatic code generation. The isomorphic code generated from a smart contract can

be accessed by both dApp and smart oracles, enabling a transparent access to the smart

contract and the underlying data structure. The isomorphic execution of a smart contract is

critical to the productivity of developing a smart contract and applications or services based on

it.

11

Figure 3. Conventional dApp vs. Isomorphic dApp Architecture

Not all smart contract languages support isomorphic contracts; the support for isomorphic

contracts is limited to contracts written for AERGOSQL.

DISTRIBUTED FILE SYSTEM

AERGOFS is a core component of the AERGO platform, providing distributed file system

functionalities.

AERGOFS is dependent on the DD for managing metadata related to files; metadata about

each file including physical location, hash value, and various statistics is stored within the DD.

While smart contracts provide structured data storage with data schema and indexes for faster

query, AERGOFS intends to provide the unstructured data storage capability of AERGO.

AERGOFS provides a simple HTTP interface, enabling access from both smart oracles running

on server environment and dApps running on web browsers.

DISTRIBUTED VERSION CONTROL
Unlike traditional blockchain systems, AERGO views chain forks and block reorganizations as

core features of blockchain, rather than annoying side effects. By adopting git-like data models

and command structure, AERGO seeks to enable collaborating on data as easy as it is to

collaborate on source code.

12

REPOSITORIES

Figure 4. Public and Private Repositories

AERGO supports the creation of public and private repositories. Each repository can be either

named or unnamed. A named repository has an associated public entity on AERGO Public

Network’s Distributed Directory. An unnamed repository has no such association.

Much like a public Git repository, a public AERGO repository is intended to be transparent to

read and write, or selectively allow different permissions to anonymous users. A common

configuration is to create a public AERGO repository with read-only anonymous access.

A private repository is intended to be an AERGO repository with full access control enabled,

both for reading and writing the repository. A public or private repository is effectively a private

blockchain in a sense that it operates independently from AERGO Public Network. As a result,

AERGO Token does not have any utility within public or private repositories.

BRANCHES

Figure 5. Branching and Merging Blocks

13

Within each repository, different branches pointing to a different snapshot in the blockchain

status can be created. In fact, the concept of “best chain” in AERGO is analogous to the master

branch.

SYNTAX AND SEMANTICS

AERGO seeks to provide friendly syntax and semantics for users accustomed to version control

systems such as Git. Such functionalities can be accessed through AERGO CLI client, as well

as RPC APIs.

a. Basic Commands

Set out below are illustrations of the basic usage of AERGO for distributed version control.

aergo branch <new branch> [--block=<block hash>]

The above command creates a new branch. Without an implicit block hash as a parameter, the

current branch's best block is used as the root block for the new branch. The new branch

functions as an independent chain, with the ability to acquire new blocks. Without user-created

branches, the master branch exists by default.

aergo tag <block hash> [--block=<block hash>]

The above command creates a new named tag. Without an implicit block hash as parameter,

current branch's best block is used as the root block for the new tag. Unlike a branch, a tag is

unable to acquire new blocks.

aergo checkout <branch | tag>

The above command checkouts an existing branch or tag for examination or manipulation.

aergo pull <repository:branch>

This command merges the changes in the remote branch to the local repository branch. As a

result, the remote transactions are applied to the local repository as well. In the process, the

named tags are synchronized as well.

aergo push <repository:branch>

The above seeks to merge the changes in the local branch to the remote repository branch. As

a result, the local transactions are applied to the remote repository as well. In the process, the

named tags are synchronized as well.

b. Branching and Merging

One of the most complicated concepts in distributed version control systems is the process of

merging branches. For blockchains with real-time data, merging is even more difficult to

achieve. Due to its non-destructive process, branching is a simple and straightforward process.

14

However, merging requires two different approaches.

Automatic Merging

By default, Automatic Merging is the expected process for merging two branches. Automatic

Merging is similar to the block-reorganization process in blockchains. In this case, the merging

source's blocks are dissolved into transactions and absorbed in the merging target's merging-

pool. Ultimately, the merging pool results in a new block attached to the merging target's best

block. In the process, transactions inconsistent to the merging target branch are automatically

excluded from the new block.

Consistent Merging

Consistent Merging happens only when a branch is created with a specified consistent merging

logic. Consistent merging is similar to the merge functionality provided by version control

systems like Git. Unlike Automatic Merging which discards inconsistent transactions by default,

Consistent Merging relies on the predefined conflict resolution logic to manage inconsistent

transactions. The conflict resolution logic is implemented as a system-level smart contract.

SCALABILITY
AERGO employs three different approaches for achieving scalability.

• Domain partitioning

• Scale up

• Scale out

DOMAIN-BASED PARTITIONING

Domain-based partitioning is the most basic scalability strategy used by AERGO. Domain-

based partitioning is achieved through the distributed version control (DVC) functionality of

AERGO.

Unlike conventional blockchain implementations, AERGO is able to fork and merge its data

through branches freely. As a result, the distributed ledger can be partitioned both logically and

physically through different repositories.

Such approach is already used successfully by distributed version controls such as Git and

Mercurial. For instance, a gigantic service like GitHub is able to host tens of millions of

repositories.

However, the effectiveness of domain-based partitioning is dependent on the structure and

usage of data. When a single repository needs to handle unbounded expansion of data,

partitioning data through branching is very difficult. As a result, two additional scalability

approaches are provided by AERGO for handling huge amount of data for a single repository.

15

SCALE OUT

AERGO’s scale out strategy depends on the functionality provided by AERGOFS. AERGOFS

fulfils two roles for achieving scalability:

(1) AERGOFS can serve as a storage layer for each node's blocks and indices. The

manner AERGO nodes utilize AERGOFS is very similar to how HDFS is used by HBase.

With AERGOFS, each node is able to store unlimited number of blocks and indices and

function as a gigantic uber-node.

(2) AERGOFS is able to function as an object storage similar to S3 as well. In this

configuration, AERGOFS provides immutable and durable access to binary data. In this

case, AERGO's smart contracts need to store locators to access files stored on

AERGOFS.

SCALE UP

The most direct and simple approach that AERGOFS seeks to utilize for scalability is through

optimizing a single node.

While horizontally scaling out works well for large amount of data, it fails to meet realistic

benchmarks. With the advent of cheap memory, fast storage such as SSD, and limited network

throughput, optimizing a single node is very effective for everyday systems. Blocko learned this

lesson dearly while providing a real life blockchain implementations in the enterprise world, and

AERGO, with Blocko’s assistance, seeks to borrow many ideas and techniques from Blocko’s

Coinstack in this regard.

In order to make each node as efficient as possible, AERGO nodes are intended to be equipped

with an efficient networking stack and an optimized storage engine for enhanced I/O.

• AERGO networking stack provides an out of order, highly parallel networking fabric that is

able to serve a high number of nodes with complex topology on both bare metal

environment and cloud environment.

• AERGOSQL forms the basis of the high-performance storage engine required by AERGO.

• AERGO nodes use multi-thread architecture to take advantage of a multi-core environment.

CONCURRENCY CONTROL
AERGO seeks to provide two mechanisms for transaction serialization.

BLOCK LEVEL SERIALIZATION

Since each branch of blockchain consists of a series of blocks, the transactions can be

serialized through stacking after one another.

AERGO aims to provide Multi Version Concurrency Control (MVCC) based on block heights. As

a result, with a branch and block height specified, it is possible to provide [consistent reads]

16

across different nodes in the repository.

AERGO's MVCC functionality aims to provide both a snapshot isolation for consistent reads and

a form of optimistic locking through row or document versioning. However, MVCC works only for

block-level serialization.

POOL LEVEL SERIALIZATION

Clients accessing AERGO nodes can take advantage of the deterministic, scheduled creation of

blocks by delegates, a characteristic provided by DPOS and core consensus, to execute

transactions synchronously, with a strong guarantee on transaction finality.

Since each delegated node can apply a uniform serialization ordering to process new

transactions into the memory pool and to create new blocks, clients do not have to wait for the

block interval to retrieve the result of transactions. As a result, the latency of executing a

transaction decreases from seconds to milliseconds.

Figure 6. Pool Level Serialization

However, with block reorganizations and chain partitioning in play, as well as the presence of ill-

intentioned clients, pool level serialization provides only a probabilistic level of consistency. On

the other hand, with optimistic workloads, pool level serialization works well for solving real life

problems.

17

PRIVACY
DATA ISOLATION

AERGO intends only to allow users with adequate permission to access ledger data by

providing git-like private repositories.

By creating a new branch from a remote parent branch, users are able to keep newly created

blocks in a private branch, such that they are isolated from the public. Only with those

permission to the specific repository housing the branch are able to access the blocks.

DATA SHARING

A specific branch can be synced with remote repositories to exchange data. In this case, the

private branches of the repository can either cherry-pick relevant commits from the public

repository or merge the whole change set automatically.

PARALLELISM
The performance of a specific blockchain depends on the efficiency of creating and sharing new

blocks, and the time it takes for each node to validate the new blocks.

The block creation process involves a consideration of the whole distributed consensus protocol

of blockchain. It is submitted that the block validation process used as part various distributed

consensus protocols is sometimes poorly designed and implemented.

While underperforming nodes are acceptable for consumer-grade blockchain implementations

such as bitcoin or Ethereum, enterprise-grade blockchains like AERGO require much robust

performance on a near real-time basis. As a result, each node needs to be implemented with as

much efficiency as the consensus protocol itself.

AERGO intends to introduce the concept of parallelism to various stages of processing blocks to

maximize the performance.

The parallelism involves the careful analysis of dependencies between transactions included in

each block and an efficient architecture inspired by SEDA8.

DEPENDENCY ANALYSIS

In order to guarantee consistency between nodes, blockchain implementations usually employ

the policy of serializing the execution of all the transactions and the blocks available.

As a result, the rate of blocks a blockchain node can process depends on the time it takes to

process each transaction, regardless of the number of processing units or memory available.

8 https://en.wikipedia.org/wiki/Staged_event-driven_architecture

https://en.wikipedia.org/wiki/Staged_event-driven_architecture

18

In order to enable the parallel validation of transactions and blocks, AERGO intends to perform

a dependency analysis between transactions and blocks and create a data structure known as

Deterministic Transaction Tree.

Deterministic Transaction Tree

A Deterministic Transaction Tree (DTT) can be viewed as a formal representation of the

execution order of transactions to result in deterministic results to the state machines affected

by the transactions.

As a result, for a set of transactions, there can be more than one viable and correct DTT.

Each branch of a DTT can be processed and applied to the underlying state machines related to

the transactions in parallel with deterministic resulting states. A typical DTT will have a number

of branches with varying lengths.

Figure 7. Deterministic Transaction Tres

Depending on the size of blocks, each DTT can have branches from with couple of transactions

in length to thousands of transactions in length. Similarly, a DTT can have varying number of

branches as well.

The validity of a DTT can be only verified by actually executing a DTT against a set of state

machines. A version of DTT can be optimized into another version by transforming the tree as

well.

In order to create a DTT for a set of transactions in a realistic time frame, AERGO employs a

rule-based approach to analyze the transactions. More sophisticated approaches including

machine learning are planned to be tested in the future releases of AERGO.

