

AERGOSQL Whitepaper

AERGOSQL: A New Smart
Contract Engine for
Blockchain

Last Updated: 17 July 2018, AERGO

1

AERGOSQL: A New Smart

Contract Engine for Blockchain

Won-Beom Kim, Technical Committee head of the AERGO Limited

LEGAL DISCLAIMER
This paper relates to the AERGO project and should be read in conjunction with the whitepaper

available at https://AERGO.io. This and other documents may be amended or replaced at any

time, without notification of any changes or access to any additional information.

This document is general information only. It contains forward-looking statements that are

based on the beliefs, as well as certain assumptions and information, of the author. No

representation or warranty is given as to the achievement or reasonableness of any plans,

future projections or prospects in this paper. The views and opinions expressed in this paper are

those of the author only. These statements are not advice, nor an offer of any kind, nor may

they be relied upon for any purpose. The AERGO platform is not intended to constitute

securities or any other regulated products in any jurisdiction. If necessary, please obtain any

necessary advice from a qualified professional.

This paper has not been reviewed by any regulatory authority in any jurisdiction. References in

this paper to specific companies, networks and/or potential use cases are for illustrative

purposes only. Other than explicitly mentioned partners or providers, the use of any other

company and/or platform names and trademarks does not imply any affiliation with, or

endorsement by, any of those parties.

https://aergo.io/

2

ABSTRACT
This paper describes AERGOSQL, the proposed smart contract engine that intends to operate

on the AERGO platform. It assumes a base level of understanding regarding computer coding,

smart contracts, programming and blockchain.

It is proposed that AERGOSQL will support a relational data model and business logic definition

through PL/SQL-like scripting language. On AERGOSQL, it is intended that data models can be

created using data definition language (“DDL”) and manipulated or accessed using data

manipulation language. Business logic utilizing the data model can be created and invoked

PL/SQL-like syntax.

In order to support enterprise-level performance, AERGOSQL proposes to process smart

contract definitions and executions through LLVM in order to utilize JIT compilation1. Pluggable

storage engine support enables leveraging scalable storage engines such as WiredTiger2.

1. PROBLEMS WITH SMART CONTACTS
Mainstream blockchain implementations such as Ethereum prefer procedural, Turing-complete

support for smart contracts.3 While a procedural smart contract support enables more flexible

applications, the flexibility also allows for more errors and vulnerabilities.4

Since the majority of procedural smart contract languages are modeled around the principle of

object-oriented programming, the data access on procedural smart contracts is often modeled

after in-memory data structures as well. Other types of smart contract languages support more

robust interfaces for key-value storages or document storages.5 However, we believe that the

data access functionalities offered by procedural smart contract languages are basic compared

to more mature NoSQL or SQL databases and often result in complex and lengthy

implementations to work around the limitations presented.

2. SQL AND SMART CONTRACTS
Relational data models and SQL interface provide far more efficient ways to access and

manipulate data stored in ledgers than procedural means. In fact, the bulk of business logic

1 https://llvm.org/devmtg/2016-09/slides/Melnik-PostgreSQLLLVM.pdf
2 http://www.wiredtiger.com
3 https://github.com/ethereum/wiki/wiki/White-Paper#scripting
4 https://eprint.iacr.org/2016/1007.pdf
5 https://medium.com/wearetheledger/hyperledger-fabric-couchdb-fantastic-queries-and-where-to-find-them-

f8a3aecef767

3

required by most smart contract use-cases can be represented by DDL and constraints only.

Scripting languages designed around SQL, such as PL/SQL, provide more complete support for

building smart contracts.

The following figure is an illustrative example of a balance accounting system implemented

using PL/SQL.

Balance accounting system implemented using PL/SQL

3. DESIGN OF ARGOSQL
The proposed design of AERGOSQL consists of three layers of functionality.

The Frontend

The frontend of AERGOSQL parses PL/SQL and creates an AST representation of the script. A

dialect of PL/SQL optimized for usage on permissioned ledgers is used for both simplicity and

4

functionality. ANTLR6 is used to process the EBNF for PL/SQL dialect and generate a parser in

Go language.

The Optimizer

Based on the AST emitted by the frontend, the optimizer creates the IR of the script for LLVM.

In order to maximize performance, the optimizer allocates the right nodes of execution in IR.

The Backend

The backend of AERGOSQL is intended to provide the abstraction layer for the functionalities

required by the execution nodes utilized by IR. In order to enable optimization, the backend

provides relevant statistics of the persisted data as well. The preferred choice of backend in the

initial design is WiredTiger, but AERGOSQL should be able to utilize any data storage backed

by b-tree or LSM tree.

In order to support different types of consensus algorithm implemented by various ledgers,

AERGOSQL provides the point-in-block mechanism for rollback and recovery. Such

functionality allows blockchain implementations with block reorganization to utilize AERGOSQL.

4. IMPLICATIONS
The familiar SQL interface supported by AERGOSQL is intended to allow blockchains to

support more developer-friendly methodologies for building smart contracts. AERGOSQL seeks

to improve performance and scalability, which in turn should enable more demanding use-cases

to be realized on blockchain as well.

6 http://www.antlr.org

